AP Calculus BC

Unit 2 – Introduction to Differentiation

1	Find the value of <i>a</i> so that	t the function is continuous.
	$f(x) = \begin{cases} x^2 + x + a, & x < 1 \\ x^3, & x \ge \end{cases}$	
	$\int (x)^{-1} \left\{ x^{3}, \qquad x \geq 1 \right\}$	l
2	Explain why the equation	$e^{-x} = x$ has at least one solution.
3	Sketch one possible graph	n for a function $f(x)$ that has the stated properties:
	f(4) exists	
	$\lim_{x \to 4} f(x) \text{ exists}$	
	f(x) is not continuous a	t x = 4.
In ex	cercises 4-7, find the avera	ge rate of change of the function over each interval.
4	$f(x) = x^3 + 1$	
	a) [2,3]	b) [-1.1]
5	$f(x) = e^x$	
	(a) $[-2,0]$	b) [1,3]
6	$f(x) = \ln x$	
	(a) [1,4]	b) (100,103)
7	$f(x) = 2 + \cos x$	
	(a) $[0,\pi]$	b) $\left[-\pi,\pi\right]$

The table below shows selected values for a function, f(x), at various values of x.

x	0	1	2	5	9
f(x)	14	18	24	32	44

8) Find the average rate of change of the function over the interval [1,2].

9) Find the average rate of change of the function over the interval [5,9].

10) Estimate the slope of the function when x = 3.

_	/						
	11	A tank	of water is draining so that	at the number of gallons	of water in the tank aft	ter t minutes is determined	by
$Q(t) = 10(4-t)^2$. Find the average rate of change at which the water has drained during				ed during the first two min	utes.		
	12	Grass clippings are placed in a bin, where they decompose. For $0 \le t \le 30$, the amount of grass clippings remaining in the bin is modeled by $A(t) = 6.687(0.931)^t$, where $A(t)$ is measured in pounds and t is measured in days. Find the average rate of change of $A(t)$ over the interval $0 \le t \le 30$. Indicate units of measure.					
	13	 A ball dropped from a state of rest at time t = 0 travels a distance s(t) = 4.9t² m in t seconds. a) How far does the ball travel during the time interval [2,2.5]? b) Compute the average rate of change (velocity) of the ball over [2,2.5]. c) Compute the average rate of change for the time intervals in the table. 					
			Interval Average Rate of Change over interval	[2,2.01]	[2,2.001]	[2,2.00001]	

In Exercises 1-3, use the definition

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

to find the derivative of the given function at the indicated point.

1)
$$f(x) = \frac{1}{x}, a = 2$$

2) $f(x) = x^2 + 4, a = 1$
3) $f(x) = x^3 + x, a = 0$

In Exercises 4-6, use the alternate form of the definition

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

to find the derivative of the given function at the indicated point.

4) $f(x) = x^2 + 4, a = 1$	5) $f(x) = \sqrt{x+1}, a = 3$	6) $f(x) = 2x + 3, a = -1$
----------------------------	-------------------------------	----------------------------

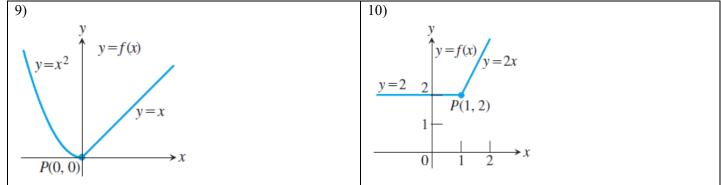
7) For the function $f(x) = \begin{cases} 3x^2 - 4, & x < 0 \\ 3x - 4, & x \ge 0 \end{cases}$, determine if f(x) is differentiable at x = 0.

$$g(x) = \begin{cases} (x+1)^2, & x \le 0\\ 2x+1, & 0 < x < 5\\ (6-x)^2, & x \ge 5 \end{cases}$$

8) Given the function g(x) above:

- a) Determine if g(x) is differentiable at x=0
- b) Determine if g(x) is differentiable at x=5
- c) State the values of x for which g(x) is differentiable.

For 9 and 10, find all points where f is not differentiable. Verify by comparing right-hand and left-hand derivatives.



Г

Differentiate the following functions. Do not simplify the answer

1) $g(t) = 6t^{\frac{5}{3}}$	2) $B(x) = \frac{8x^2 - 6x + 11}{x - 1}$	3) $f(s) = 15 - s - 4s^2 - 5s^4$
4) $G(v) = \frac{v^3 - 1}{v^3 + 1}$	5) $f(x) = 3x^2 + \sqrt[3]{x^4}$	6) $g(t) = \frac{\sqrt[3]{t^2}}{3t-5}$
7) $p(x) = 1 + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3}$	8) $k(x) = (2x^2 - 4x + 1)(6x - 5)$	9) $h(x) = x^{\frac{2}{3}} (3x^2 - 2x + 5)$
10) $M(x) = \frac{2x^3 - 7x^2 + 4x + 3}{x^2}$	11) $f(x) = \frac{4x-5}{3x+2}$	12) $f(x) = \frac{1}{1 + x + x^2 + x^3}$

13	Sketch the graph of a continuous function f with $f(0) = -1$ and $f'(x) = \begin{cases} 1, & x < -1 \\ -2, & x > -1 \end{cases}$.
14	True or False If $f(x) = x^2 + x$, then $f'(x)$ exists for every real number x. Justify your answer.
15	Let $f(x) = 4 - 3x$. Which of the following is equal to $f'(-1)$? (B) 7 (C) -3 (D) 3 (E) does not exist
16	Find the unique value of k that makes the function, $f(x) = \begin{cases} x^3, & x \le 1 \\ 3x+k, & x > 1 \end{cases}$ differentiable at $x = 1$.

- 1. For what values of x does the graph of $y = 2x^3 + 3x^2 12x + 1$ have a horizontal tangent?
- 2. For what values of x does the graph of $f(x) = (x^2 + 1)(x + 3)$ have a horizontal tangent?
- 3. Find the equations of the tangent and normal lines to the curve $y = x^2(3-x)$ when x = -2.
- 4. Find the equations of the tangent and normal lines to the curve $f(x) = \sqrt{x}$ when x = 4.
- 5. Find an equation of the tangent line to the curve $y = x\sqrt{x}$ that is parallel to the line y = 1 + 3x.
- 6. Find the equation of the line perpendicular to the curve $y = x^3 3x + 1$ at the point (2,3).
- 7. Find an equation of the tangent line to the curve $y = (x^3 3x + 1)(x + 2)$ when x = 1.
- 8. Find the points on the curve $y = 2x^3 3x^2 12x + 20$ where the tangent line is parallel to the x-axis.
- 9. Find f''(x) for $f(x) = \frac{1}{x}$.

10. Find
$$\frac{d^2 y}{dx^2}$$
 for $y = \sqrt{x}$.

Use the given table for problems 12-15.

- 11. Given h(x) = f(x) + g(x), find h'(2).
- 12. Given d(x) = f(x) g(x), find d'(3)
- 13. Given $p(x) = f(x) \cdot g(x)$, find p'(4).

14. Given
$$q(x) = \frac{f(x)}{g(x)}$$
, find $q'(2)$.

x	f(x)	f'(x)	g(x)	g'(x)
1	5	-1	1	2
2	4	-1	3	$\frac{3}{2}$
3	3	-1	4	1
4	2	-1	5	1
5	1	0	6	$-\frac{1}{2}$
6	2	1	4	-2

15. Given m(x) = f(g(x)), find m'(6).

Differentiate the following. Do not simplify your answer.

1.
$$f(x) = \sin x \cot x$$
 2. $f(x) = \frac{\tan x}{1 + x^2}$ 3. $g(w) = \frac{1 + \sec w}{1 - \sec w}$

4.
$$k(v) = \frac{\csc v}{\sec v}$$
 5. $k(x) = \sin x + 2x^3 + 4\tan x$ 6. $F(x) = \frac{\cos x}{1 - \sin x}$

7.
$$r(a) = \csc(a^3)$$
 8. $H(s) = \cot(s^2 - 4\sqrt{s})$ 9. $f(x) = 5\tan(\cos x)$

- 10. $f(x) = \cos x + 3x^2$ 11. $p(w) = \tan \sqrt{w}$ 12. $P(v) = \sin 3v \csc 3v$
- 13. $N(x) = \sin x 5\cos x$ 14. $h(x) = x^3 \csc x$ 15. $L(x) = \tan x \sec x$

16	Find the equations for the lines that are tangent and normal to the graph of $f(x) = \sin x + 3$ at $x = \pi$.
17	Find the equation of the normal line to $f(x) = \sin x + \cos x$ at $x = \pi$.
18	Determine all values of x in the interval $(0, 2\pi)$ for which $f(x) = \cos 2x$ has horizontal tangents.

The Package Rule

Differentiate the following. Do not simplify your answer.

1.
$$f(x) = (7x + \sqrt{x})^{-8}$$
 2. $f(x) = x^3 (2x - 5)^5$ 3. $g(w) = \csc^4 (w^5 - w^3)$

4.
$$k(v) = \sin^2(5\pi v - 4)$$
 5. $k(x) = \sin^{-3} x - \cos^3 x$ 6. $F(x) = \sqrt{-3 - 9x}$

7.
$$r(a) = (4a^3 + 5)^{\frac{3}{2}}$$
 8. $H(s) = \sqrt[3]{12s^2 + 8}$ 9. $y = \frac{1}{(4x + 3)^4}$

10.
$$f(x) = \left(\frac{x-3}{x-8}\right)^6$$
 11. $p(w) = \left(\csc w + \cot w\right)^{-1}$ 12. $P(v) = \left(\frac{-\cos v}{1+\sin v}\right)^2$

Answers (not simplified)

$$1. \quad f'(x) = -8\left(7x + \sqrt{x}\right)^{-3}\left(7 + \frac{1}{2}x^{\frac{1}{2}}\right)$$

$$2. \quad f(x) = 5x^{3}(2x - 5)^{4} \cdot 2 + 3x^{2}(2x - 5)^{5}$$

$$3. \quad g'(w) = 4\csc^{3}(w^{5} - w^{3})\left(-\csc(w^{5} - w^{3})\cot(w^{5} - w^{3})\right)\left(5w^{4} - 3w^{2}\right)$$

$$4. \quad k'(v) = 2\sin(5\pi v - 4)\cos(5\pi v - 4) \cdot 5\pi$$

$$5. \quad k'(x) = -3\sin^{-4}x\cos x - 3\cos^{2}x(-\sin x)$$

$$6. \quad F'(x) = \frac{1}{2}(-3 - 9x)^{-\frac{1}{2}}(-9)$$

$$7. \quad r'(a) = \frac{3}{2}(4a^{3} + 5)^{\frac{1}{2}}(12a^{2})$$

$$8. \quad H'(s) = \frac{1}{3}(12s^{2} + 8)^{-\frac{2}{3}}(24s)$$

$$9. \quad y' = -4(4x + 3)^{-3}(4)$$

$$10. \quad f'(x) = 6\left(\frac{x - 3}{x - 8}\right)^{5}\left(\frac{(x - 8) - (x - 3)}{(x - 8)^{2}}\right)$$

$$11. \quad p'(w) = -1(\csc w + \cot w)^{-2}(-\csc w \cot w - \csc^{2}w)$$

$$12. \quad P'(v) = 2\left(\frac{-\cos v}{1 + \sin v}\right)\left(\frac{(1 + \sin v)(-\sin v) - (-\cos v)(\cos v)}{(1 + \sin v)^{2}}\right)$$

1	Use left- and right-hand derivatives to determine if $f(x) = \begin{cases} x^2, & x < 1 \\ 3x - 2, & x \ge 1 \end{cases}$ is differentiable at $x = 1$
2	Find y' if $y = x^4 \left(4\sqrt{x} - 3\sqrt[3]{x} \right)$
3	Given $f(x) = \frac{x^2 + 3x}{x - 2}$, find $f'(x)$.
4	Find y" if $y = (x^2 - 2x + 1)^3$.
5	Write the equations of the tangent and normal lines to the graph of $f(x) = x^3 - 5x + 2$ when $x = -2$.
6	Find the point on the graph of $g(x) = x^2 + 3x + 4$ where the tangent line is parallel to the line $4x - y = 7$.
7	Write the equations of the tangent and normal lines to $f(x) = \sqrt{x^2 - 2x}$ when $x = 3$.

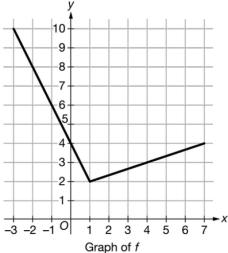
In questions 8-12, differentiable functions f and g have values shown in the table below.

x	f(x)	f'(x)	g(x)	g'(x)
0	2	1	5	-4
1	3	2	3	-3
2	5	3	1	-2
3	10	4	0	-1

8	If $A = f + 2g$, then $A'(3) =$
9	If $B = f \cdot g$, then $B'(2) =$
10	If $C = \frac{g}{f}$, then $C'(1) =$
11	If $D = \frac{1}{g}$, then $D'(0) =$
12	If $E = \frac{f}{g}$, then $E'(3) =$

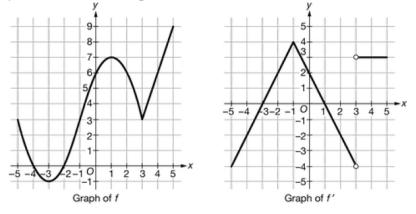
13	Find y' if $y = x^4 (4 \cos x - 3 \tan x)$
14	Given: $f(x) = \frac{\cos x}{1 + \tan x}$. Find $f'(x)$
15	Find y'' if $y = x^7 (3 \csc x)$
16	Differentiate $y = \frac{\tan x}{2x + \csc x}$
17	Differentiate $y = \sin(3x - 4)$
18	Find $f'(x)$ for $f(x) = \tan^3(4x^6 - 2x)$
19	Find y' for $y = (x^3 + 2)^4 (\cot x - 2x)^5$

A graphing calculator is required for this problem.



- 1. Let *f* be the continuous function defined on [-3,7] whose graph, consisting of two line segments, is shown above. Let *g* and *h* be the functions defined by $g(x) = (x^2 + 5x)^{\frac{1}{3}}$ and $h(x) = 7\cos x + x^3$.
 - a) The function N is defined by N(x) = f(x)g(x). Find N'(-1). Show the work that leads to your answer.
 - b) The function P is defined by $P(x) = \frac{g(x)}{5f(x)}$. Find P'(4). Show the work that leads to your answer.
 - c) Find the value of x for -3 < x < 1 such that f'(x) = h'(x).

A graphing calculator may not be used on this problem.



- 2. The graphs of the function f and its derivative f' are shown above for $-5 \le x \le 5$.
 - a) Find the average rate of change of f over the interval $-5 \le x \le 5$. For how many values of x in the interval $-5 \le x \le 5$ does the instantaneous rate of change of f equal the average rate of change of f over that interval?
 - b) Write an equation for the line tangent to the graph of f at x = 2.
 - c) For each $\lim_{x \to -1} \frac{f(x) f(-1)}{x (-1)}$ and $\lim_{x \to 3} \frac{f(x) f(3)}{x 3}$, find the value or give a reason why it does not exist.
 - d) Let g be the function defined by $g(x) = f(x) \cdot \ln x$. Find g'(4).

A graphing calculator may not be used for this problem

t (minutes)	0	15	45	70	90	100
A(t) (automobiles)	0	30	190	250	405	600

- 3. Prior to a sporting event, the number of automobiles that have entered a stadium parking is modeled by the differentiable function A, where t is the number of minutes since the parking lot opened. Values of A(t) for selected values of t are given in the table above.
 - a) According to the model, what is the average rate at which automobiles enter the parking lot, in automobiles per minute, over the time interval $45 \le t \le 90$?
 - b) Write A'(95) as the limit of a difference quotient. Use the data in the table to approximate A'(95). Show the computations that lead to your answer.
 - c) What is the shortest time interval during which it is guaranteed that A(t) = 400 for some time t in the interval? Justify your answer.
 - d) For $0 \le t \le 45$, the function f defined by $f(t) = 227t^2 + 89t$ models the number of automobiles that have entered the parking lot, where t is the number of minutes since the parking lot opened. Find f'(10), the rate at which automobiles enter the parking lot in automobiles per minute, at time t = 10 minutes.